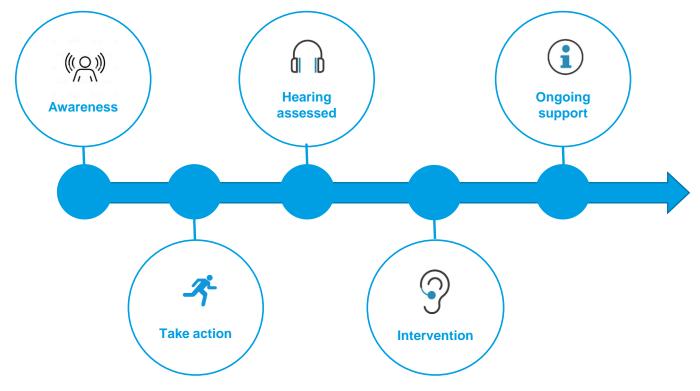
The Future is Hear

What today can tell us about tomorrow's audiology

Presented by: David Allen – Senior Research Audiologist



Diagnostics

Diagnostics

Nuheara IQbuds™

- 30 adults with various audiograms
- Built-in automated audiometry
- Tested thresholds at 500Hz, 1kHz, 2kHz, 4kHz

Results within 5dB for 87% of participants Results within 7.5dB for all participants

(Carter, Pang, Beach, Davis, and Mealings, in preparation)

Diagnosis going to the patient

- Integrated into available devices/services
- Integrated into existing data collection systems
- No travel to clinician
- Information not held by the clinician
- Relies on technology giving information to the patient, and the patient seeking support

Nura Nuraphone

- Measures otoacoustic emissions
- Data used to adjust sound levels
- Platform not (currently) open data not available clinically

enophone

- Headphone with integrated EEG sensors
- Currently available
- Potential for CER/ABR
- Platform not (currently) open data not available clinically

EEG data can be used for hearing assessment Can also be used to identify other hearing conditions:

- ABR recordings of 15 people with tinnitus and 18 controls
- Machine learning applied
- Diagnostic accuracy over 80%

(Monaghan, Liu, Zao, and McAlpine, 2020)

Use of consumer electronics to monitor health conditions not new:

Apple Watch

- Monitors environment for dangerous noise levels
- Built-in electrocardiography identifies irregular heart rate
- Fall detection
- Blood oxygen detection for early diagnosis of asthma, COVID-19

Use of existing data to identify health conditions also possible:

Recordings of speech can be used to identify kinds of dementia (Jarrold et al., 2014)

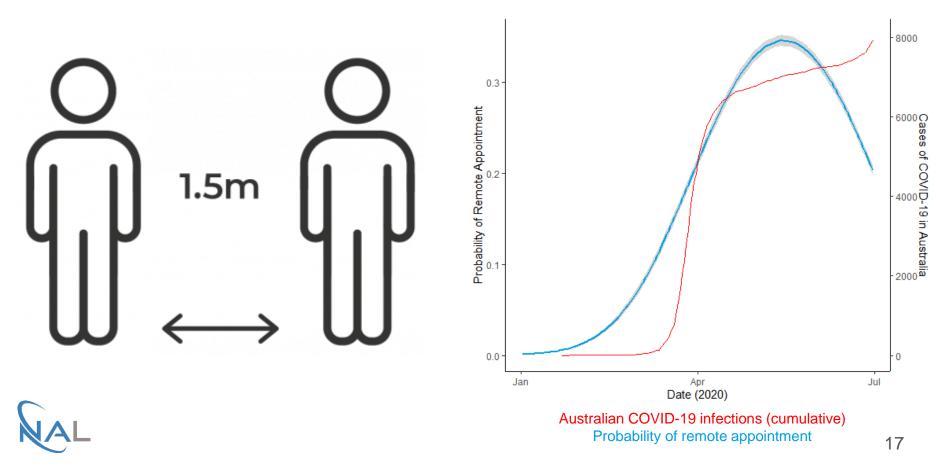
- Recordings of speech from 9 people with Alzheimer's Disease, 30 with Frontotemporal Lobar Deterioration, and 9 healthy controls
- Machine learning techniques identified correct diagnosis in up to 88% of cases

Changes in shopping habits identify pregnancy (Duhigg, 2012)

- Target Guest ID able to identify pregnancy in shoppers based on changes in buying habits
- Not dependent on the person knowing that they are pregnant

What could the future hold?

- Consumer devices identifying hearing loss using tests
 - Not just thresholds otoacoustic emissions, AEPs, &c.
- Identification through patterns of behaviour
- Anomalous interactions identified through machine learning
- Diagnosis information located with the patient or technology
 - Awareness of profession vital
 - Standards for information interchange can support alternative diagnostics


Rehabilitation

Rehabilitation

Connected Rehabilitation: NAL's connected health research program

Smartphoneconnected hearing aids

Post-fitting motivational support

Hearables PSAPs

Hearing health education

Remote device adjustment

Pre-assessment/ pre-fitting preparation

"What are the factors that determine whether staff choose to use or refuse connected hearing services?"

Survey of 132 hearing centre staff:

- Asked about three different connected hearing health services
- "Does your centre deliver [service]?"
- "What currently works well or would help your centre to use [service]?"
- "What does not work so well or stops your centre from using [service]?"

Responses collated and analysed using thematic analysis

Connected Rehabilitation – what staff need to know

- Training "Do I have the skills to use this service?"
- Staffing "Are there enough people with the right skills around me?"
- Time "Do I have enough time to be able to use this service?"
- Technology "Does the technology work effectively?"
- Usability "Does the service work easily for me and for my client?"
- The Right Client "Will my client be able to benefit from this service?"
- Clear Benefits "Do I believe that this service will help my client?"

- Connected hearing services seen as an alternative to traditional services
- Same kinds of problems arose in different kinds of connected hearing service
- The younger an intervention was, the more and more varied issues were reported
- Many staff felt that most clients were not suitable for telehealth
- However, ~80% of adults over 65 own a smartphone (Deloitte, 2018)
- Many staff did not feel that clients "needed" the service

"Hasn't been needed" "No clinical need" "Insufficient demand in this area"

Connected Rehabilitation: NAL's connected health research program

Smartphoneconnected hearing aids

Post-fitting motivational support

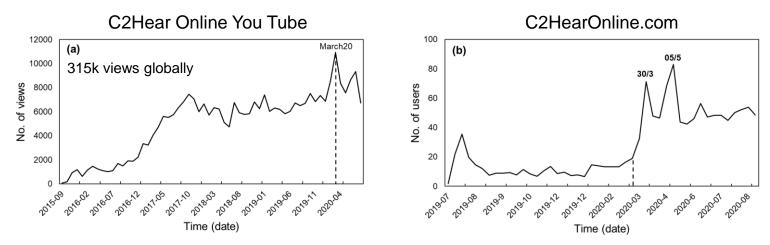
Hearables PSAPs

Hearing health education

Remote device adjustment

Pre-assessment/ pre-fitting preparation

• Evidence-based, randomised controlled trial (n=203)


m2Hear https://www.nottingham.ac.uk/helm/dev-test/m2hear

- 42 mRLOs
- Delivered on mhealth platforms
- Tailored to individual needs
- Greater interactivity
- More activities

- Outcomes similar to C2Hear
- Users preferred m2Hear
 - concise and convenient
 - personalised
 - empowered users

(Ferguson et al, Sem Hear 2019; Ferguson et al Int J Aud, 2020; Maidment et al J Med Int Res, 2020)

United Kingdom	39%
United States	32%
Canada	6%
India	4%
Australia	3%

US version now developed

Included in UK guidelines including recent COVID19

National Institute for Health and Care Excellence

Link on >40 UK audiology dept websites

(Ferguson et al Int J Aud, 2020) 24

Environmental Momentary Assessment

- Collecting patient feedback linked to environmental data
- Developed as research tool, moving into hearing device apps

Internet of Things

- Linkage of devices to each other/the Internet
- Lightbulbs, motion sensors, locks
- Can incorporate additional sensors (e.g. accelerometers, electrical, optical)

Accelerometer

• Allows for fall detection, gait analysis

Ear-EEG

- Ear worn EEG electrode
- Explored by Widex and Oticon
 (Bech Christensen et al., 2018; Jensen, 2018)
- EEG can identify auditory attention, listening effort

Hearing devices connected to smartphone/Internet

- Continuous environmental monitoring
- Continuous neural monitoring
- Continual user-prompted subjective feedback
- Identification of issues in near real time
- Automated "good enough" adjustments
- Flagging for review by clinicians
- Will we need the clinician?

Analysis of textual patient interactions

- Signia TeleCare system patients can send message to clinician
- **2623 messages** sent and received from 20/12/2018 30/4/2020
- 717 conversations identified by NAL researcher

- **438 conversations** related to a problem with the hearing aids
- **316** had a settings adjustment applied **309** resolved
- **51** had a counselling conversation **43** resolved
- 20 had a problem that could not be addressed at all remotely

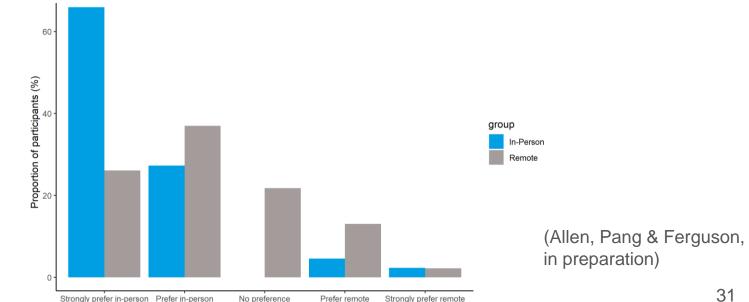
(Allen, Jevelle, Pang, Cooper & Ferguson, in preparation)

334 conversations initiated by patients

94 conversations used a specific staff member's name in the first message

Messages were personal and friendly

- Language tailored to the client's way of communicating
- Demonstrated a knowledge of the client's history and preferences.

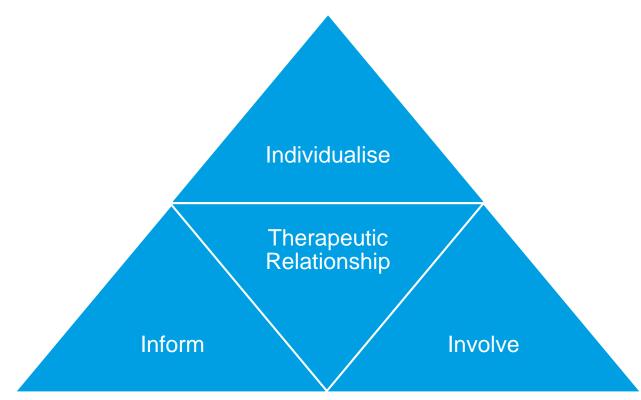

Patient: [name] is in da house Clinician: Hey [name]

Like text messaging - a direct conduit between client and staff

Patients seen for fitting during COVID-19

- 48 seen remotely; 45 seen in-person ٠
- Still a strong preference for in-person services ٠

Patients seen for fitting during COVID-19


- Qualitative interviews
- Eleven patients
- 6 had had a remote service
- 9 preferred an in-person service

"Well, first of all, I like to see the person I'm talking to"

"Well, I just thought it was like going to the doctor. You just go."

"I have to get somebody to drive me [...] But I do prefer to see the consultant."

So what does the future hold?

Ubiquitous computing:

"computing anytime and everywhere"

Diagnostics will change:

- We may not be the primary source of a diagnosis
- Need to establish awareness of the profession so that pathways are clear

Rehabilitation will change:

- More data allows for responsive technology
- Allows us as professionals to focus on the personal

Thank you

All the staff at NAL whose work I have spoken about today

Nuheara, Hearing Australia, and all of the people who funded this work

Specsavers for inviting me here to speak today

Mel Ferguson

Jessica Cooper

Jessica Monaghan

Elizabeth Beach

Kiri Mealings

Jermy Pang

References

Bech Christensen, C., Hietkamp, R. K., Harte, J. M., Lunner, T., & Kidmose, P. (2018). Toward EEG-Assisted Hearing Aids: Objective Threshold Estimation Based on Ear-EEG in Subjects With Sensorineural Hearing Loss. *Trends in Hearing*, *22*, 233121651881620. <u>https://doi.org/10/ggttvx</u>

Deloitte. (2018). Smart everything, everywhere: Mobile Consumer Survey 2017, The Australian cut.

Duhigg, C. (2012, February 16). How Companies Learn Your Secrets. *The New York Times*. <u>https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html</u>

Ferguson, M., Brandreth, M., Brassington, W., Leighton, P., & Wharrad, H. (2016). A Randomized Controlled Trial to Evaluate the Benefits of a Multimedia Educational Program for First-Time Hearing Aid Users: *Ear and Hearing*, *37*(2), 123–136. <u>https://doi.org/10/f8czsr</u>

Ferguson, M., Maidment, D., Henshaw, H., & Heffernan, E. (2019). Evidence-Based Interventions for Adult Aural Rehabilitation: That Was Then, This Is Now. *Seminars in Hearing*, *40*(01), 068–084. <u>https://doi.org/10/gg2b8g</u>

Gomez, R., & Ferguson, M. (2020). Improving self-efficacy for hearing aid self-management: The early delivery of a multimedia-based education programme in first-time hearing aid users. *International Journal of Audiology*, *59*(4), 272–281. <u>https://doi.org/10/ggtq9j</u>

Grenness, C., Hickson, L., Laplante-Lévesque, A., & Davidson, B. (2014). Patient-centred audiological rehabilitation: Perspectives of older adults who own hearing aids. *International Journal of Audiology*, 53 Suppl 1, S68-75. <u>https://doi.org/10.3109/14992027.2013.866280</u>

Jarrold, W., Peintner, B., Wilkins, D., Vergryi, D., Richey, C., Gorno-Tempini, M. L., & Ogar, J. (2014). Aided diagnosis of dementia type through computer-based analysis of spontaneous speech. *Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality*, 27–37. <u>https://doi.org/10/ghcf6f</u>

Jensen, N. S. (2018). Real-life Hearing Part 2: Assessment and Solutions. *Widexpress*, 40, 10.

